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Monte Carlo Estimation Under Different
Distributions Using the Same Simulation
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Two methods for reducing the computer time necessary to investigate changes in distribution
of random inputs to large simulation computer codes are presented. The first method pro-
duces unbiased estimators of functions of the output variable under the new distribution of the
inputs. The second method generates a subset of the original outputs that has a distribution
corresponding to the new distribution of inputs. Efficiencies of the two methods are examined.
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1. INTRODUCTION AND SUMMARY

Long-running computer codes have been used in
assessing the risks and benefits of such things as nu-
clear power and hazardous waste disposal. Examples
of these may be found in Dillon, Lantz, and Pahwa
(1978); Hirt and Romero (1975); and McKay, Cono-
ver, and Beckman (1979). An additional study is
found in the example given by Iman and Conover
(1980), and such studies were suggested by Goodman
and Koch (1982) and Levinson and Yeater (1983).
Although the codes are intrinsically deterministic, in-
complete knowledge of the modeled process, often
expressed as uncertainty about values of the input
variables, leads one to treat the inputs as random
variables. The analyst then interprets the output itself
as a random variable, the distribution of which is
related to that of the inputs by the transformation of
the computer code.

When the analyst is faced with defending the
choice of the distribution of the inputs and assessing
its influence on conclusions, costs may make rerun-
ning the code with new distributions prohibitive.
Nevertheless, the sensitivity of estimates of the mean,
cdf, or other statistics to changing the distribution of
the inputs will need to be known. The purpose of this
article is to give two methods that allow the analyst
to change the distribution of the input variables
without rerunning the computer code.

Mathematically the problem can be described as
follows. Let X, X,, ..., X, be independent (sample)
vectors of input variables with density f;(x), and let
Y; = H(X,) be the output variable for input vector X,.
Let H represent the computer code or any transfor-
mation of the output from the computer code. For
clarity of presentation, assume that the expected
value of Y is the parameter to be estimated. This
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expectation is denoted by u, = E; {Y} when the
inputs come from f; and by u, = E; {Y} when they
have a different density, f,(x). Two methods are given
for changing the distribution of the inputs after they
are sampled from f,. The first method is a weighting
scheme similar to importance sampling (see Kahn
and Marshall 1953), and it produces an unbiased es-
timator of u,. The other method is a rejection
method (see Kennedy and Gentle 1980) that leaves
the output variable H(X) with the density induced by
letting X have density f, .

Two methods and their efficiencies, relative to
direct simulation, are examined in Sections 2 and 3.
The efficiencies of each method are shown to de-
crease rapidly as large differences occur between the
densities f;(x) and f,(x). The efficiency of the weight-
ing method, however, may be greater than 1.0 for
smaller differences between the two densities.

Although there is usually a loss of efficiency associ-
ated with the application of these methods, they do
offer the analyst a way to investigate the sensitivity of
the system under study (the computer code) to the
simulation distribution. This sensitivity study can be
made at almost no cost compared to that of rerun-
ning the computer code for all desired choices of f; .

An example of a simulation of the Three Mile
Island Unit 2 reactor is given in Section 4. Ad-
ditional examples are given in Sections 2 and 3 to
illustrate the application and properties of the two
methods.

2. THE WEIGHTING METHOD

We assume that the support R, for the density
function f, contains the support R, for the density f, .
It is also assumed that H(X)) (i = 1, ..., n) have been
simulated using f, and that an estimate of u, =
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Figure 1. Relevant Densities for the Weighting Method.: (a ) Density of H (X ) Under f,; (b ) Density of H (X'} Under f,; (c ) Density of

w (X )H (X)) Under f,.

E, {H(X)} is desired. Let Y be the vector of the n
outputs from the simulation, ¥, = H(X), and let w; =
£,(x)/f1(x;). Our estimator of u, is g(Y) = Zw; Y/n, a
weighted average of the original outputs. To see that
g(Y) is an unbiased estimator of u,, observe that

Efl(g(Y)) = {J Zw,; H(x;) f1(x;) dx,}/n
Ry

= {Z J H(x,) fo(x) f1(x)/f1(x) dx:}/”-
R;

Since R, = R, and f; is 0 outside of R, , we have

E; (g(Y) = {Z j H(x))f5(x) dxi} / n

= E; {HX)} = u,.

A schematic diagram representing this weighting
method is given in Figure 1. Figure 1(a) shows the
density of H(X) when the underlying density is f;.
The density of H(X) with an underlying distribution
of f, is given in Figure 1(b) with the mean value
marked with a vertical line. The density function of
the transformation w(X)H(X) under f, is given in
Figure 1(c) for a linear weight function w(x). The
vertical line denotes the mean of the density. The
support of this density is from O to 2, as the maxi-
mum value of w(X) is 2. From Figure 1(b and ¢ it is
obvious that the density function of H(X) under sam-
pling from f, and the density function of w(X)H(X),
where X is generated from f,, are not the same. The
mean values are the same, however; that is,
E, {(wX)H(X)} = E,{HX)}.

Although this method closely resembles impor-
tance sampling, its intent is different. In importance
sampling, a density f; is used for sampling in such a
way that the resulting estimator of u, is unbiased
and has smaller variance than that obtainable from
simple random sampling from f, . Since in this case f,
and f, are fixed, smaller or larger variances could
result depending on the situation.

The efficiency of g(Y) is measured by its variance
relative to the variance of ZY/n when the corre-
sponding values of X come from f,. For simulations
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with large differences in the shapes of the two den-
sities, the efficiency is usually near 0. This arises be-
cause the weight function w(x) becomes large over
wide ranges of the vector x.

To assist in the study of the efficiency of this
method, we assume that the expected values of H
and H? with respect to densities indexed by a param-
eter (vector)  may be expressed as Eq{ H(X)} = ¢(0)
and Eo{H*(X)} = y(0), and that f(x) = f(x; 6,) and
f2(x) = f(x; 8,). Then, with w(X) = f(X; 8,)/f(X; 8,),
the variance of the weighted estimator w(X)H(X) is
given by

var(wX)H(X)) = E,, {wX)H(X))*} — E§ (wX)H(X)).
Now, Eo (WX)H(X)) = Eq,(H(X)) = ¢(6,), and

Ep {(WX)H(X))*}

= I S3x; 8)H*(x) f(x; 0,)/f %(x; 0,) dx
R2

_ J WX)H?()f (x; 8,) dx
Rz

= Eo,W(X)H*(X)),

since w(x) is 0 outside of R, .

For many of the common densities, Eg,
{(W(X)H*(X)} is expressible as a function of y(8*) for
some 0* in the parameter space of 0. Appendix A
contains the expected value of w(X)H?*(X) under f,.
These values may be used to investigate the efficiency
of the procedure. For example, if f; and f, are both
members of the beta family with parameters a and b,
and if H(x) = x, then ¢(a, b) = a/(a + b) and ¥(a,
b) = a(a + 1)/(a + b)a + b + 1). From Appendix A
the variance of the weighting scheme w(X)H(X) is

Bla,, by)B(a, — ay, 2b, — bW(2a, — ay, 2b, — b,)
Bla,, b2)2

— (ayf(a, + b))%

In particular, if f; is uniform, a¢, =1, b, =1, and
b, =1 (a series of these densities for 1 <a <3 is
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Figure 2. Example Densities.

given in Fig. 2), then the variance becomes
var,(W(X)H(X)) = a3/(a, + 1)*Q2a, + 1).

Since the variance of H(X) under f, is a,/(a, + 1)*(a,
+ 2), the efficiency of the method as measured by the
ratio of these variances is (2a, + 1)/a3(a, + 2).

By similar methods the efficiency of generating
H(x) =1 — x under the density f, by weighting the
observations from f; can be computed. A plot of the
efficiency of the weighting method as a function of a
for these two functions when f,(x) = ax“~ ! and f, is
uniform is given in Figure 3. The efficiency of weight-
ing observations from the function H(x) = x de-
creases rapidly as a increases. On the other hand, the
efficiency for the function H(x) = 1 — x not only in-
creases over a portion of the range 1 <a < 3, but is
actually greater than one over the entire range. This
is not surprising or unusual. The weighting scheme
given here is similar to importance sampling in which
one chooses the densities so that the resulting esti-
mators have smaller variances than would have been
attained by direct simulation. In importance sam-
pling the experimenter is free to choose the density f;
to minimize the variance. Here both f, and f, are
determined by the densities of interest.

As illustration, 50 uniform 0-1 observations were
generated and the mean values of both H(X) =X
and H(X) = 1 — X were estimated for f,(x) = ax* ™.
The estimated means as a function of a are shown as
dots in Figure 4. The true means are denoted by the
solid lines. For the function H(x) = x in Figure 4a),
the inefficiency of the procedure forces what is a
slight bias in the mean of the generated sample at
a = 1 to become accentuated as g increases to 3. On
the other hand, for H(x) =1 — x the bias at a =1
has almost disappeared when a reaches 3. It is in-
teresting to note that, even with the bias induced by
sampling variability of the original sample, the esti-
mated mean values follow the same general shape as
the true means as a increases to 3. This property

probably holds in general. Successive estimates all
have the correct expectations that will force the cor-
rect shape. Systematic deviations from the true ex-
pected values are caused by the lack of independence
of the estimators.

3. THE REJECTION METHOD

The second method of changing the input distri-
bution relies on a random selection of the existing
pairs of variables (x;, y,). It is necessary that there
exist a uniform bound M such that f,(x)/f;(x) < M
for all x, and that the support R, of f, be contained
in the support R, of f;. Let the random variable V
given X; = x; be uniform between 0 and Mf,(x,). The
value X; = x; and the corresponding Y; = y; are re-
tained as a sample from density f,(x) if the realization
v of V is less than f,(x)).

To see why the rejection method produces the de-
sired sampling distribution, consider the cdf of an X
selected to remain in the sample.

Pr{X < z|X is retained}

_ Pr{X <z and X is retained}
B Pr{X is retained}

f Pr{V < f;(w)| u} f,(u) du

>

f Pr{V < fy(u)|u} f,(u) du
Ry

where u < z and X < z imply component by compo-
nent inequality, and R, is the support for f,. Now,
Pr{V < f,(u)|u} = f,(u)/(Mf,(w), and the support R,
of f, is contained in the support R, of f;; otherwise
M would not be finite. Hence

f Pr{V < f,(u)| u} f,(u) du

- J (2(u)/M) du = F,@yM

in

]
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Figure 3. Efficiency of the Weighting Method.
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Figure 4. Simulated Mean Values: (aYH (X)) =X; b)H X) =1 -X.

and

L Pr{V < f(u)|u} /,(u) du

=L (f2(w)/M) du = 1/M.

Therefore, Pr{X < z|X is retained} = F,(z), the dis-
tribution function of X under f, .

This procedure for selecting a subset of the original
sample is no more than the rejection method for
random variate generation. In this application, how-
ever, the analyst cannot choose just any f, to gener-
ate efficiently samples from f,, because f, is of in-
terest of its own. Moreover, it is the unknown distri-
bution of H(X) that we are concerned with, not, as in
the usual rejection methods of random variate gener-
ation, the distribution of X.

The efficiency of this rejection method can be mea-
sured by the probability that a random x from f is
accepted as a random variate from f, . This probabil-
ity is given by the reciprocal of the bound M, since

Pr{a random X is selected}

= j Pr{V < f,(u)|u} f,(u) du

= 1/M.

As with the weighting method, the rejection
method can be highly inefficient. Density functions
that differ greatly will require large values of M. For
some pairs of densities, f,(x)/f;(x) may be unbounded.
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Appendix B contains the bounds M for most of the
densities commonly used in simulation studies. For f;
uniform 0-1 and f, = ax*~!, M from Appendix B is
given by

M =I'(a + HI(OTQ)TRT@() = a.

Hence the efficiency as measured by the proportion
of retained samples is 1/a. Unless the original sample
size is large, one would not use the rejection tech-
nique with these densities for values of a much in
excess of 2, because the expected sample size is
halved at that point.

As with the example given in Section 3, 50 samples
were generated from a uniform 0-1. Empirical cdf’s
for the retained samples for the two functions
H(x)=x and H(x) =1 — x, with a= 15 and a =2,
are given in Figure 5. The empirical distribution
functions are shown as step functions with the true
cdf superimposed. Each of the four empirical cdf’s in
this figure follows the general shape of the true cdf
and is within the sampling variability expected for
such estimators.

It is interesting to contrast the retained samples for
the two functions. For H(x) = x, more samples whose
realizations are greater than .5 are retained. From
Figure 2 the densities with a = 1.5 and a =2 are
concentrated in the range from .5 to 1. Hence more
large than small realizations are retained. For the
function H(x) = 1 — x, more mass is to the left of .5
and more small realizations are retained.

Although losses in efficiency are guaranteed with
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Figure 5. Empirical cdf's: (a) H(X) =X, a=1.5; (b) H(X)=X, 8a=2.0; (¢) HX)=1-X, a=1.5; (d) HX)=1 - X,
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this method, the efficiency can remain high for some 4. EXAMPLE
rather large changes in the shape of the densities.
(This is the case in the example shown here in which The Safety Code Development Group (1985) in the
a uniform is transformed to a triangular density.) Energy Division of Los Alamos National Laboratory
Moreover, a low efficiency of the method may be a wrote TRAC-PF1/MOD], a transient reactor analy-
minor inconvenience when compared with rerunning sis code (TRAC) that provides predictions of postu-
the computer code. lated accidents in pressurized water reactors. The
B PRESSURIZER A
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Figure 6. Simulated Reactor System Display From TRAC.
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Figure 7. Input and Output Values From TRAC Simulation.

code is interactive in nature, producing computer ter-
minal displays that allow reactor-safety personnel to
monitor the behavior of the simulated reactor. A
schematic drawing of such a display is shown in
Figure 6. Included in the figure are variable names,
such as mass flow rate and system pressure, that the
operator is allowed to monitor. Also included are
variables, such as pump speed and feedwater flow
rate, that the operator may change.

For the purpose of an example, a simulation was
performed using TRAC configured as the Three Mile
Island Unit 2 reactor was on the day of its accident.
Starting with this basic reactor configuration, 50 sim-
ulation runs were performed in which the pump
speeds on the A side were drawn from a uniform
density between 20 radians per second (rad/s) and
125.7 rad/s. Simultaneously, input values for feedwa-
ter flow rate on the A side were drawn from a uni-
form density with support from 1 kilogram per
second (kg/s) to 10 kg/s. The changes in pump speed
and flow rate were made after 2,600 (real time) sec-
onds, and the code was then allowed to run an ad-
ditional 1,000 (real time) seconds. Each run used ap-
proximately 5 minutes of CRAY-1 computer time.

At the conclusion of the 3,600 (real time) seconds
the monitored variables were recorded. For this ex-
ample, system pressure in M Pascal and mass flow
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rate on the A side in kg/s were typical of the moni-
tored variables and are the ones presented here.
Figure 7 shows the relationships between these
output variables and the two input variables. Nega-
tive flow rates indicate backward flow through the
system. The circled point is a case in which the com-
puter code developed numerical problems and failed
to run for the entire 3,600 seconds. This point was
deleted from the analysis.

The density functions of interest in this study are
the beta densities given in Figure 2 with the same
support as the underlying uniforms given previously.
We present the results obtained from changing the
density of both input variables simultaneously from
uniforms (f,) to scaled densities of the form f, =
ax®~ 1. In actual studies one would not only change
the densities simultaneously but would also make
distributional changes to the input variables one at a
time. In this way the total impact that each density
exerts on the output variables can be assessed.

The results of this study are given in Figure 8.
Using the weighting method the expected value of
the A-side flow rate as a function of a is given in
Figure 8(a). This expectation is increasing almost as a
linear function of a. The empirical cdf’s of the flow
rate with a = 1.5 and a = 2 derived from the rejec-
tion method are given in Figure 8(b). As one would
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Figure 8. Estimation From TRAC Simulation: (a ) Flow Rate A; (b ) Empirical cdf; (c ) System Pressure; (d ) Empirical cdf.

expect from the increasing means in Figure 8(a), the
cdf for a = 2 lies to the right of the flow rate cdf for
a=15.

The behavior of system pressure as a function of a
is more interesting than that of flow rate. The esti-
mated expected values of system pressure as a func-
tion of a obtained by the weighting method are given
in Figure 8(c). This function is quadratic in form with
a minimum close to a = 1.5. The empirical cdf’s of
system pressure as obtained from the rejection
method for a = 1.5 and a =2 are given in Figure
8(d). These cdf's are somewhat a surprise, as one ex-
pects the cdf at a = 1.5 to be to the left of the cdf
when a = 2. There is some indication from Figure
8(d) that these distributions cross, and the distri-
bution of system pressure when a =2 has a long
right tail compared to that when a = 1.5. Further
simulations at @ = 2 may be necessary to investigate
this phenomenon completely.

The preceding simulation exercise shows the bene-
fit of using the two methods presented here. It is
impractical to study the distribution of the output
variables at many alternative distributions of the
input variables when each simulation study takes
hours of computer time on even the fastest com-
puters. The methods given here allow the experi-
menter to assess the practical implications of
changing the input distributions and point out areas
where further simulation may be necessary.
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APPENDIX A: Eq {WwH*(X)} FOR
SELECTED DENSITIES

Normal N (u, o2)

(py — p5)? ai
cxp[ 201 — 03 | [03Q201 — 03)]"? Vias, a2

where a, = (20u, — 03u,)/(26? — 02) and a, =
626%/(262 — o%). Note that E{H?} = y(u, 6?). The
expectation does not exist in this form for ¢% > 242

Beta x“~ (1 —x)*~Y/B(a, b)

Blay, b)BRa, — ay, 2b, — b W(2a, — a,, 2b, — b,)
ﬂz(ab b,) ’
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Note that E{H?} = y(a, b). The expectation does not
exist in this form for a, > 2a, or b, > 2b,.

Gamma x*~ ‘e “*#/T"(a) B*
W(zys 2,)T(0)BTT(2)28 /T X (,)B3™,

where z, = 20, —a, and z, = B,8,/2B, — B,).
Note that E{H?} = y(a, ). The expectation does not
exist in this form for «, > 2a, or f, > 28,.

Poisson 2%~ *x |

exp{(A; — 41)*/4,}¥(A3/4y).
Note that E{H?} = y(4).

Binomial B(N, p)

[P% —2p,p, + Pl]Nw ( P%(l — P1) )
(1 —pyp, P} —2p,p, + Py

Note that E{H?} = y(p)and N, = N, = N.

Exponential Family C(8)B (x)exp(Z0;T ;(x))
C*(8,)/[C(8,)C(20, — 6,)]¥(26, — 8,).

Note that E{H?} = y(8). This form exists only when

C(20, — 0,) is defined.

APPENDIX B: THE BOUND M FOR
SELECTED DENSITIES

Normal N (u, a?)
For a2 > 02,
M = (0,/0,)exp(.5(u; — p,)*/(6 — a3))-
Betax“ '(1 —x)*~1/B(a, b)

For(a)a, > a,and b, > b, or (b)a, < a,, b, >
b,,and (a, — a;) > (b, — by),

M = Cngz—al)(l _ Xo)(bz—bl)’

where X, = (a, — a,)(a, — a, + b, — by)and C
= P(a,, b,)/Bla;, b,).

For (¢c) a; =a, and b, > b, or (d) a, > a, and
b,=b,,

M= ﬂ(ap b1)/ﬂ(az’ bz)-
Gamma x* e “*/T"(a) B*

Fora, >a,and §, > 8,,

M = CX§2~*Vexp{(1/B, — 1/B,)X o},
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where X, = B,B,(a,
[(a,)B7 /T (e))BT

Fora, =a, =aand §, > f,,

M = (B./B,)

— o)y — B,) and C =

Poisson A% ~*/x!
For A, > 2,,
M =exp(d; — ).
Binomial B(N, p)
For p; >p,and N, > N,
M = (1 —p)¥/(1 — p)".
Forp, =p,=pand N, > N,,
M=(1-p¥
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